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ABSTRACT
The goal of system evaluation in information retrieval has always
been to determine which of a set of systems is superior on a given
collection. The tool used to determine system ordering is aneval-
uation metric such as average precision, which computes relative,
collection-specific scores. We argue that a broader goal is achiev-
able. In this paper we demonstrate that, by use of standardization,
scores can be substantially independent of a particular collection,
allowing systems to be compared even when they have been tested
on different collections. Compared to current methods, ourtech-
niques provide richer information about system performance, im-
proved clarity in outcome reporting, and greater simplicity in re-
viewing results from disparate sources.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance evaluation.

Keywords
Retrieval experiment, evaluation, average precision, system mea-
surement

General Terms
Measurement, performance, experimentation

1. INTRODUCTION
A key aim of research in information retrieval (IR) is to develop

search methods with improved effectiveness, but identification of
improvements requires rigorous evaluation methodologies. The
Cranfield evaluation methodology and its derivatives use standard
test collections, consisting of documents, topics, and judgments as
to which documents are relevant to which topics. The IR systems
to be evaluated are used to run the topics (formulated as queries)
against the document corpus to produce a ranked list of documents
or run for each topic. The relevance judgments then show which
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documents are relevant to the topic, and an evaluation metric is
applied to the list to provide a score for the run. Run scores are
aggregated, typically by taking the arithmetic mean, to produce an
overall score for the system. The effectiveness of different systems
can be compared by their aggregate system scores, and the statisti-
cal significance of any score difference assessed with a hypothesis
test [Smucker et al., 2007].

Several evaluation metrics are widely used in system measure-
ment, including precision-at-d (P@d), average precision (AP), and
discounted cumulative gain (DCG). However, these measuresdo
not allow the performance of a system tested on one collection to
be readily compared with that of a system tested on a different col-
lection. Variability in topic difficulty, and hence in average topic
scores, means that a good score for one collection might be poor
for another, depending on the mix of topics in the collection. Nor-
malization by the score of an ideal ranking, as employed in APand
nDCG, can be viewed as a method for correcting for such variabil-
ity, but it does so with quite limited success.

In this paper, we investigate the use ofscore standardization
[Webber et al., 2007] to enable inter-collection score comparisons.
Under standardization, the difficulty of a query is directlyestimated
from the scores achieved by a sample of experimental systems, and
parameters derived from these estimates are then used to normalize
the scores both of the experimental systems and of future systems.
Standardization gives each topic the same score mean and standard
deviation for the experimental systems, and reduces the effect of
topic variability in the evaluation of new systems.

Standardization makes scores interpretable in themselves, and it
becomes possible to directly compare scores measured on different
topics and test collections. With standardization, for example, re-
searchers with private collections could compare their results with-
out exchange of data sets, through the use of common standardizing
systems. Within a single collection, reduction in variability means
that all topics contribute equally to measured differencesin effec-
tiveness. Across multiple collections, researchers couldidentify
how consistent a system is in different environments.

To explore the validity of score standardization, we analyze the
results for runs on several key TREC collections. Our results show
that standardization leads to an average two-thirds reduction in the
difference in scores achieved by an IR system on different collec-
tions, enabling different systems to be evaluated against different
collections and still have their performance compared. Standard-
ization is also more robust to differences in collection formation
than existing normalization schemes. Standardization hasseveral
benefits and no obvious drawbacks, and we propose that standard-
ization parameters be published with test collections to allow richer
comparison and evaluation of systems than is currently possible.



2. METRICS AND SCORE VARIABILITY
Many evaluation metrics have been described in the literature

[Buckley and Voorhees, 2005, Järvelin and Kekäläinen, 2002, Mof-
fat and Zobel, to appear]. Most of these are based on precision and
recall. Precision is the proportion of documents up to a specified
depth (that is, ordinal rank) in a run that are relevant;recall is the
proportion of all relevant documents that are returned. Dueto the
number of documents in current collections, only a subset ofthe
documents can be assessed for relevance, and recall is computed
based on the set of known relevant documentsR. The degree of
incompleteness ofR is, in general, unknown.

A simple evaluation metric is precision-at-d (P@d), which is the
proportion of the topd documents in a run that are relevant. There
is no adjustment for the number of relevant documentsR = |R|
for each particular topic, which can vary by a factor of a hundred
or more. For instance, the maximum P@10 score that any run can
receive for a topic with three relevant documents is0.3, while a
ceiling effect, in which most runs have P@10 at or near1.0, can
occur when there many easy-to-find relevant documents. A richer
metric, which also lacks anR adjustment, is rank-biased precision
(RBP) [Moffat and Zobel, to appear], in which the effectiveness
score is a biased, bounded sum of relevance values. The higher
the rank of a relevant document, the greater its contribution to the
score, with the bias controlled by a parameterp.

Some metrics adjust for the number of documents relevant to a
topic. One of these is R-precision (RP), which modifies P@d by
settingd to the number of known relevant documentsR for each
topic, resulting in a relatively robust metric [Buckley andVoorhees,
2005]. A more complex metric is average precision (AP), which
averages the precision of a run at each relevant document returned,
assigning a precision of0 to unreturned known relevant documents.
The metrics RP and AP share the characteristic that a perfectrank-
ing (one which places all known relevant documents at the top),
and only a perfect ranking, achieves a score of1.

Assigning a score of1 to a perfect run can be achieved for other
metrics, including those supporting multi-valued relevance judg-
ments, by a process of explicitnormalization, where a run’s raw
metric score is divided by the score that an ideal ranking would
achieve, based on the set of known relevant documentsR (and,
for metrics supporting multi-valued relevance, their degree of rel-
evance). The discounted cumulative gain metric (DCG) [Järvelin
and Kekäläinen, 2002], which sums the relevance contributions of
each rank, discounted by a logarithmically decaying weight, is nor-
malized by dividing by the score of an ideal ranking to produce
normalized DCG (nDCG). Such normalization can be applied to
essentially any metric. In fact AP (though not RP) is a metricin this
category, and can be considered as a raw metric, sum of precisions
(SP), normalized by the number of relevant documentsR [Aslam
et al., 2006], since the SP score for a ranking with allR relevant
documents at the top is itselfR. Thus, AP is normalized SP (nSP).
We refer to normalization by ideal ranking asR-normalization.

A metric gives a score for a system’s run against a topic. For
an evaluation experiment, the run scores for the topics in the test
collection and the systems participating in the experimentcan be
considered as a matrix, as illustrated in Figure 1, in which sys-
tems are rows, topics are columns, and higher scores are shown by
lighter-shaded cells. Note that the easy topics (white vertical lines)
stand out much more clearly than the good systems, although cer-
tain poor systems are distinct as horizontal black lines. Let M be
a matrix of run scores such as that in Figure 1. The score for sys-
tem s achieved on topict is denoted asmst. A system’s score is
the mean of its per-run scores,Ms∗. It is also interesting to con-
sider the mean score of a topic,M∗t. Similarly, one can consider
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Figure 1: Per-run average precision scores for TREC 8 AdHoc Track
systems. Systems are in rows, ASCII-ordered by system named; topics are
in columns, ordered by topic number. Each cell represents the AP score for
a system’s run against a topic. Lighter shades represent higher scores.

the standard deviation of scores for a system,sd(Ms∗), and for a
topic,sd(M∗t).

Test theory, which originated in the assessment of the abilities
of human subjects through examination, is built on the concept of
a subject’s “true” score, which the testing process is attempting to
elicit [Bodoff and Li, 2007]. In information retrieval evaluation, a
similar goal is attractive, that is, to be able to say that a system’s
true score is simply (say)0.32, and to derive this “true” score (or
a reliable estimate of it) with as little assessment effort as possi-
ble. Indeed, much contemporary IR evaluation is implicitlybuilt
on the assumption of a true score hiding behind the topic scores
observed on a given collection. For instance, statistical significance
tests such as thet-test implicitly ask how likely it is that the true
mean metric scores of two systems are in fact the same, given the
observed topic scores and assuming that they are a random sample
of some larger population of topic scores.

However, such absolute interpretations of metric scores, which
map from an achieved aggregate score in isolation to an evalua-
tion of the performance of the system, are not possible with the
metrics above, due to the high degree of variability in topicscores
illustrated in Figure 1. The distribution of system scores depends
heavily on which topics happen to be included in the collection, and
is the reason why we always need to interpret scores in the context
of a particular test collection. In particular, a system might achieve
quite different scores on different test collections, and,even for re-
trieval contexts for which this collection is representative, might
achieve a different score had a different set of topics been cho-
sen. For example, Buckley [2005, p. 311] compares 8 successive
versions of the SMART system on the first 8 TREC AdHoc col-
lections, and, while the improvement in AP score of the latest over
the earliest version on any single collection is of the orderof 50%
to 100%, the best collection AP score of the earliest (weakest) sys-
tem is better than 4 of the collection scores of the latest (strongest)
system. Even on the one collection, a system’s score can onlybe
recognized as good or bad by comparing it with the scores of other
systems on the same collection. In fact, knowledge of a system’s
score is less useful than knowledge of its rank among the set of
systems run against the collection.

Figure 2 illustrates the difficulty of assigning a meaning toan
absolute AP score, even in the context of a single collection. The
graph displays the 95% confidence intervals on mean AP scoresfor
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Figure 2: The 95% confidence intervals on mean AP scores for TREC 8
AdHoc Track systems, using at distribution. Systems are ordered by their
mean AP scores.

System AP (Ms∗)
READWARE2 Flab8atdn ric8tpx UT803

mean 0.469 0.324 0.269 0.176
st.dev 0.224 0.220 0.219 0.185

Topic AP (M∗t)
q403 q430 q414 q401

mean 0.708 0.486 0.203 0.048
st.dev 0.226 0.217 0.108 0.090

Table 1: Mean and standard deviation of AP scores for the first, tenth,
fortieth, and seventy-fifth percentile systems and topics by mean AP from
TREC 8 AdHoc Track.

the 129 systems participating in the AdHoc Track of TREC 8. The
fundamental assumption here, as with statistical significance test-
ing, is that the observed scores have been randomly sampled from
an underlying population of scores. Thus, for instance, thesystem
Flab8atdn achieved an observed mean AP score of0.324; but the
best that can be said under the random sampling hypothesis isthat
(with 95% probability) the system’s true mean AP score is between
0.262 and0.386. Despite being the thirteenth-ranked system by
observed score, its score range overlaps with those of the second-
ranked and ninety-fourth-ranked systems. So, even assuming that
the collection is perfectly representative of what it is intended to
test, a mean AP score is, in isolation, not very informative.

The reason for the wide confidence interval on AP scores is the
variability of per-topic scores. Table 1 lists AP score means and
standard deviations for the first, tenth, fortieth, and seventy-fifth
percentile systems and topics as ordered by mean AP. System stan-
dard deviations are remarkably similar, and the four systemmeans
range by a factor of only2.5. Topics, on the other hand, are far
more variable; the four means range by a factor of almost15, and
standard deviations by2.5; ordered by standard deviation, the ratio
from the first to the seventy-fifth percentile is almost6. And this
variability is despite AP’s use ofR-normalization.

Even if system comparisons are on a single collection, and paired
hypothesis tests are being used to help control the difference in
topic score means, the wide variability in topic score standard de-
viations means that the comparisons may be less reliable than the
test results suggest. In a paired hypothesis test, the computation is
based on the score deltas between the two systems; but if the score
standard deviation of one topic is6 times that of another topic, then
the average score delta will also be6 times larger, meaning the
higher-variance topic will have6 times as much influence in sys-

tem score deltas and paired hypothesis testing as the lower-variance
topic. Nor are high-variance topics more reliable indicators of per-
formance than low-variance topics. The Pearson’s correlation be-
tween topic reliability, as measured by item-total correlation [Bod-
off and Li, 2007], and topic AP standard deviation, considering the
best 75% of TREC 8 AdHoc Track systems by mean AP, is only
0.005, indicating no meaningful correlation. Measured differences
between systems are disproportionately due to a subset of the topics
rather than to the topic set as a whole.

3. STANDARDIZATION
We propose a direct form of normalization, namelystandard-

ization. Score standardization is a well-known technique in tests
applied to human subjects [Hays, 1991, chapter 4], but it hasnot to
our knowledge been applied to IR evaluation. In standardization,
topic scores are directly adjusted by the observed mean score and
standard deviation for that topic on a sample of systems. If atopic
t has a score mean ofµt = M∗t and a score standard deviation
of σt = sd(M∗t), and if a systems receives a score for that topic
of mst, then the standardized scorem′

st for that run is:

m
′

st =
mst − µt

σt
(1)

The valuesµt andσt are thestandardization factors for topic t.
Such a score is known as az score, and expresses how many stan-
dard deviationsmst is from the sample mean. As such, a standard-
ized score is immediately informative in a way that an unstandard-
ized one is not: one can tell directly from a run’s score whether the
system has performed well for the topic.

In a recent workshop paper [Webber et al., 2007], we explored
the impact of standardization on an historical TREC collection. We
found that, within the one collection and set of experimental sys-
tems, standardization evens out topic score variances, making indi-
vidual run scores more meaningful. In this paper we build on and
extend those results, and apply the techniques to the problem of
practical inter-collection system comparisons.

Standardizedz scores are centered on zero and unbounded, while
most IR metrics are bounded in the range[0, 1]. To follow this
practice,z-scores can to be mapped into the[0, 1] range, with one
attractive candidate being the cumulative density function of the
standard normal distribution:

FX(m′) =

Z m′

−∞

1√
2π

e
−x2/2 dx (2)

Normal-CDF-converted standardization is used throughoutthis pa-
per, and is referred to simply as “standardization” from here on.
Observe that, by design, a standardized score of0.5 means “av-
erage”, and0.84 and0.16 represent one standard deviation above
and below average. Conversion to the range[0, 1] also has the de-
sirable property of reducing the influence of outlier data points, for
instance when only one system finds relevant documents for a topic.

Figure 3 shows the distribution of per-run unstandardized and
standardized AP scores for TREC 8 AdHoc Track systems. The
raw AP scores are heavily skewed towards lower values, with al-
most half of the per-run scores being below0.2. In contrast, the
standardized scores are evenly distributed across the[0, 1] range,
with the 25th, 50th, and 75th percentiles being0.26, 0.50, and0.74.

Standardization of raw scores produces precisely the same score
values as standardization ofR-normalized scores, sinceR-normal-
ization involves division by a per-topic constant factor, which iden-
tically scales topic mean and standard deviation. So, standardized
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Figure 3: Distribution of the6,450 per-run AP and standardized AP
scores for TREC 8 AdHoc Track systems.

SP gives precisely the same values as standardized AP (nSP),and
standardized DCG as standardized nDCG. Thus, metrics can be
considered as raw,R-normalized, and standardized.

The production of standardization factors requires the existence
of experimental runs from which they can be calculated. However,
since the current test collection creation methodology also requires
such experimental systems to form the judgment pool, in practice
the requirements for producing standardized scores are no higher
than for producing unstandardized scores. Once standardization
factors for each topic and metric have been determined from the
experimental systems, they can be published along with the test
collection, and used to standardize the scores of new systems run
against the collection. How many experimental systems are re-
quired to derive reliable standardization factors, and howlong these
factors remain reliable in the face of changing (and hopefully im-
proving) systems, is considered in the next section.

4. ROBUSTNESS OF STANDARDIZATION

Experimental data
The data used in this paper is the TREC 2004 Robust Track test col-
lection and runs from the participating systems. The RobustTrack
of TREC is designed to examine and improve the consistency of
information retrieval systems by attempting to predict difficult top-
ics and emphasizing them in evaluation metrics. The document set
is the AdHoc Track corpus, namely TREC disks 4 and 5, minus
theCongressional Record. The TREC 2004 Robust Track topic set
consists not only of 49 topics newly created for the task (a 50th was
dropped when no relevant documents were found), but also the50
topics from the TREC 2003 Robust task, and 150 topics from the
AdHoc tracks of TREC 6 through TREC 8 (1997, 1998, and 1999).
Relevance judgments for the earlier topic sets are reused, with new
judgments being made only for the new topics. A total of 110 sys-
tems from 14 different groups participated, with participating sys-
tems submitting runs against both the 49 new topics and the 200 old
ones. The runs submitted to the original experiments in which the
older experimental sub-collections were created are also available.
This data set therefore is well-suited for exploring questions of
inter-collection comparability and the durability of standardization
factors. However, we exclude the TREC 6 AdHoc sub-collection
as the lack of topic title keywords from many topic descriptions, an
issue unique to this sub-collection, causes anomalous performance
from description-only runs.

Longevity of standardization factors
Standardization factors for a collection are calculated based on the
results of thestandardizing systems, that is, the systems that con-
tributed to the original experiment. These standardization factors

Collection
T7.adh T8.adh T03.rob

Pearson 0.998 0.998 0.998
Kendall 0.969 0.962 0.970

Table 2: Pearson’s correlation of scores and Kendall’sτ rank correlation
using standardized AP for TREC 2004 Robust Track systems on each of the
earlier sub-collections, comparing the effect of standardizing based on the
original experimental systems and standardizing based on the TREC 2004
Robust Track systems.

are then used to standardize the scores of new systems being eval-
uated against the collection. Over time, as systems improve, the
standardization factors may become out of date. This can have two
effects. First, comparisons within a collection can becomeinaccu-
rate, as the relative difficulty of topics may change. Second, stan-
dardizations on different collections may be based on experimental
systems of different intrinsic quality. The second issue isconsid-
ered in Section 5, the first here.

Table 2 gives the Pearson’s correlation for system scores and the
Kendall’s τ correlation for system rankings for the TREC 2004
Robust systems on each of the earlier sub-collections, comparing
in each case the results obtained by standardizing using theorigi-
nal experimental systems and standardizing using the TREC 2004
Robust systems. Note that the Pearson and Kendall’sτ correla-
tion coefficients work on different scales and so cannot be directly
compared to each other. The Kendall’sτ should be compared with
the0.742 correlation for ranking the TREC 2004 systems based on
the TREC 2003 versus the TREC 2004 topics; the Pearson’s co-
efficients should be compared with the0.943 correlation on scores
between the two topic sets. Clearly, standardization usingrelatively
outdated systems is much less distorting than comparisons between
different test collections.

Estimation of standardization factors
The standardization factors derived from the standardizing systems
can be thought of as estimates of the true factors for the topic. A key
question is how many systems are required in order to get reliable
standardization factors, and, in particular, what effect reducing the
number of standardizing systems has upon system ranking. Here,
the benchmark is the ranking obtained from standardizationfactors
derived from the full experimental set. The following experiments
use the relevance judgments from the full judgment pool, limiting
the number of participating systems only when calculating stan-
dardization factors.

The test uses as standardizing systems the TREC 2003 Robust
Track systems, and the test collection is the topics createdfor that
track. The evaluated systems are the TREC 2004 Robust Track
systems as run against the TREC 2003 topics. The procedure is
to sample from the standardizing systems, derive standardization
factors from the sample, use these to standardize the scoresof the
evaluated systems, and calculate the Kendall’sτ between the sys-
tem ranking from the sampled standardization and from the full
standardization. This is repeated multiple times for each sample
size. The 50th (median), 95th and 99th percentile lowest Kendall’s
τ figures are recorded. The whole process is then repeated for other
sample sizes.

Figure 4 reports the Kendall’sτ for varying sample sets, giv-
ing median values and lower-end percentiles, using standardized
AP. In comparison, the Kendall’sτ on system rankings on the
TREC 2004 Robust systems between the TREC 2003 and the
TREC 2004 topics using unstandardized AP is0.742, and between
the unstandardized and standardized AP scores for the TREC 2003
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Figure 4: Percentiles of Kendall’sτ between rankings on partial and full
standardization system sets, using standardized AP. The test collection and
standardization systems are from the Robust Track of TREC 2003; the eval-
uated systems are those submitted to the Robust Track of TREC2004, con-
sidering only their runs against the TREC 2003 topics. Therewere2,000

random samples made for each sample size. The full standardization set has
78 systems. The Kendall’sτ between the TREC 2003 and TREC 2004 sub-
collections on unstandardized AP, and between unstandardized and stan-
dardized AP on TREC 2003, are also shown.

sub-collection is0.919. Even taking the 99th lowest percentile, as
few as 5 of the 78 systems need to be sampled for standardization
factors that give more consistent results than inter-collection com-
parisons, while 10 to 15 systems are sufficient to better the corre-
lation with unstandardized scores at the 95th and 99th percentiles.
A small set of systems, therefore, is sufficient to provide standard-
ization factors that give reliable system rankings, far smaller than
is needed to provide the relevance judgments.

5. CROSS-COLLECTION COMPARISONS

Comparability of identically sampled collections
In investigating the question of cross-collection comparability, two
kinds of collections need to be considered. The first is collections
that we know to be drawn from the same population under the ran-
dom sampling hypothesis. By definition, significance tests between
two such collections are statistically valid, if it is understood that
their results are being extended only to other samples of this pop-
ulation. The second is collections where it cannot be assumed that
they have been randomly sampled from the same underlying popu-
lation, that is, where there may be factors that cause one collection
to be significantly different from another.

If we use random sampling, then the sampled values will be-
have as an independent and identically distributed variable, and the
theoretical basis of hypothesis testing will be met. Such randomly-
sampled collection pairs can be approximated by randomly sam-
pling from the topics of an existing collection, or set of collections.
Any set of collections can be used and still, via random sampling,
be considered identically sampled, but it is preferable to choose
collections that are relatively homogeneous. Here, the 100topics
from the AdHoc tracks of TREC 7 and TREC 8, Topics 351–450,
are used, and the runs are those made by the TREC 2004 Robust
Track systems. The topics (and associated runs) are randomly par-
titioned into two halves to form two randomly sampled collections.
(The fact that we are sampling from such a small population, with-
out replacement, means that the assumption of independenceis vi-
olated, but the results are adequate for our current purposes.) The
random partitioning is repeated multiple times to generatea set of
identically-sampled collections.

P@10 RBP.95 SP/AP DCG
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Figure 5: Mean standard-deviation normalized root mean square error
(dRMSE) for TREC 2004 Robust Track systems on1,000 random parti-
tionings of Topics 351–450 from the TREC 7 and TREC 8 AdHoc tracks,
for different metrics, with and without normalization and standardization.
Standardization factors are derived from the original TREC7 and TREC 8
systems.

Score comparability between collections means that, if we run
the same system against two collections, it should receive similar
scores for each collection. Here, “similar” can be understood in the
loose sense of producing aggregate system scores that are not too
different; or, more narrowly, as producing sets of topic scores that
are not found to be significantly different under statistical testing.

System score comparability can be measured using root mean
squared error (RMSE). Continuing the notation of Equation 1, let
S be our set of evaluated systems. Consider two collections,C

and D. Let MC
s∗ be the score under some metric that system

s ∈ S achieves on collectionC (that is, the mean of the scores that
s achieved on the topics making upC), and similarly forMD

s∗.
Then the root mean squared error betweenC andD is:

RMSE =

s

P

s∈S(MC
s∗ − MD

s∗)2

|S| (3)

The RMSE is dependent upon the magnitude of the score values for
a metric; if scores for one metric are precisely ten times thescores
for another, then the RMSE will be ten times greater, even though
comparability is effectively the same. To facilitate comparisons
between different metrics we normalize by dividing by the average
standard deviation of system scores for each collection, toderive
standard-deviation normalized root mean square error or dRMSE:

dRMSE =
2 · RMSE

sd({MC
s∗ : s ∈ S}) + sd({MD

s∗ : s ∈ S})
(4)

Note that normalizing by the geometric rather than the arithmetic
mean of the two standard deviations produces almost identical re-
sults in practice.

Randomized topic set re-sampling can be used to derive distri-
butions of dRMSE figures for different metrics. Figure 5 gives the
results of multiple random partitionings of the TREC 7 and TREC 8
AdHoc topics. The metrics P@10, RBP with persistencep = 0.95,
SP (unnormalized AP), and DCG are compared, together with their
R-normalized and standardized versions. The results show that ev-
ery metric with standardization is more stable than all metrics in
their raw form. And standardization leads to significantly greater
stability thanR-normalization, even on identically-sampled col-
lections. (As will be seen later, normalization is far less robust to
differently-sampled collections.)

A second form of collection comparability is finding statistically
significant differences. If the same system is tested on two dif-
ferent collections, then the results on the two collectionsshould
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Figure 6: The 97.5th highest percentile false positive rates for various
metrics, with different forms of normalization. A false positive is a finding
that a system is significantly different from itself using a two-tailed, two-
samplet-test at levelα = 0.05. False positive rates are calculated for the
110 TREC 2004 Robust Track systems, by2,000 random re-partitionings
of Topics 351–450 from the TREC 7 and TREC 8 AdHoc tracks. Standard-
ization factors are derived from the original TREC 7 and TREC8 systems.

not be found to be significantly different; if they are, then that
is a false positive, or at least the collections are not comparable,
since obviously a system is not significantly different fromitself.
The false positive rate for a metric on two collections therefore is
taken from the number of systems found to be significantly differ-
ent from themselves on the two collections. The significancetest
employed here is a two-tailed, two-samplet-test, at significance
levelα = 0.05.

Randomized topic set re-sampling can also be used to test the
false positive rate. Figure 6 gives the upper end of the 95% con-
fidence interval on false positive rates for the TREC 2004 Robust
Track systems over the TREC 7 and TREC 8 AdHoc Track top-
ics. Due to random sampling, the mean false positive rates for
every metric and form of normalization are close to the signifi-
cance level of0.05 (they range from0.042 to 0.052). By look-
ing at the upper end of the confidence interval, we are insteadex-
amining a reasonable upper bound on how high the false positive
rate can go when comparing two (identically sampled) test collec-
tions. SP and DCG have higher discriminative power than RBP or
P@10, so the fact that they have higher potential false positive rates
is not surprising. However, standardization enormously decreases
the upper-end false positive rates, from around 50% to just over
15%. This is achieved without harming discriminative power. For
instance, for the TREC 8 sub-collection, the proportion of system
pairs found significantly different on a two-tailed, pairedt-test at
level α = 0.05 is 68.7% for DCG,69.3% for nDCG, and68.8%
for sDCG. Normalization byR, in contrast, does little to improve
false positive rates. That is to say, even where the hypothesis of ran-
dom sampling from an underlying population is observed (as is the
case here), use of standardized metrics rather thanR-normalized
metrics leads to far more reliable inter-collection comparisons.

Comparability between distinct collections
Examination of inter-collection metric comparability between two
identically-sampled collections is a best-case situation, where the
statistical equivalence of the collections is artificiallycreated. In
practice, different collections are not identically sampled. How-
ever, the AdHoc and Robust TREC collections use the same doc-
ument corpus and were built with similar methodologies, so com-
parability between them would be desirable. We now explore the
comparability of metrics in these circumstances, and the effect of
R-normalization and standardization on this comparability.

Table 3 shows the dRMSE of system AP scores for each pair of
collections used in the TREC 2004 Robust Track. The two Ad-

T8.adh T03.rob T04.rob
T7.adh 0.627 1.857 1.285
T8.adh 1.387 0.859
T03.rob 0.583

Table 3: Standard-deviation normalized root mean square error for system
AP scores between each pair of collections in the TREC 2004 Robust set
for all systems participating in the track.

T7.adh T8.adh T03.rob T04.rob
T7.adh 0 0 0
T8.adh 2 0 0
T03.rob 103 57 2
T04.rob 61 8 0

Table 4: Number of the 110 TREC 2004 Robust Track systems that were
found to be significantly better when tested on the sub-collection in the
row than on the sub-collection in the column, using unstandardized mean
AP. Significance is determined by a two-sample, one-tailed t-test, at level
α = 0.025.

Hoc collections are relatively close to each other, as are the two
Robust collections. For instance, the observed dRMSE of0.63 be-
tween the TREC 7 and TREC 8 AdHoc collections is close to the
mean randomized dRMSE over these topics of0.60 reported in Fig-
ure 5, indicating that from the perspective of this statistic the two
collections are not significantly different. However, comparisons
between any of the AdHoc and any of the Robust collections are
problematic. The observed dRMSE of1.857 between the TREC 7
and TREC 2003 collections, for example, compares with the mean
randomized dRMSE across those two collections of0.596, and in
fact falls beyond the 99th percentile of randomized values,mean-
ing that the two collections are highly significantly different for this
statistic when using AP. Table 4, which gives false positiverates,
also indicates severe problems. Almost all systems seem signifi-
cantly better than themselves when evaluated using AP against the
TREC 2003 collection than when evaluated against the TREC 7
collection, and again this false positive rate is beyond the99th per-
centile of randomized values.

Table 5 gives the inter-collection dRMSE of standardized SP/AP
scores. As anticipated from Figure 5, the standardized scores have
a much lower dRMSE for every collection pair than do theR-
normalized AP scores in Table 3. More particularly, the dRMSE
figures are similar for every collection pair. The observed dRMSE
figures for standardized AP are well within the 95% confidencein-
terval found by randomization, and in fact sit quite close tothe re-
spective means, indicating that, for dRMSE with standardized AP,
the collections are not significantly different. The false positive
rates (not tabulated for space reasons) are also much improved, av-
eraging 5% and not exceeding 11% for any collection pair, with no
strong effect between AdHoc and Robust collections.

Figure 7 gives the mean dRMSE scores for various metrics, in
their raw,R-normalized, and standardized forms. The value of1.1
in the middle bar of the SP/AP group, for instance, is the meanof
the six values reported in Table 3. Note that these means include
both the two same-track pairs and the four different-track (Robust-
to-AdHoc) pairs; if only the latter were included, the results would
be even less flattering toR-normalization. Standardization mod-
erately improves RBP’s observed cross-collection comparability,
and, unexpectedly, marginally worsens that for P@10. However,
the improvements for SP/AP and DCG are dramatic, even from
theirR-normalized forms.



T8.adh T03.rob T04.rob
T7.adh 0.320 0.342 0.373
T8.adh 0.406 0.397
T03.rob 0.398

Table 5: Standard-deviation normalized root mean square error for system
standardized AP scores between each pair of collections in the TREC 2004
Robust set for all systems participating in the track. Standardization factors
are derived from the original experiments.

P@10 RBP.95 SP/AP DCG
0.0

0.5

1.0

1.5

2.0
raw
norm
std

Figure 7: Mean standard-deviation normalized root mean square error
(dRMSE) for TREC 2004 Robust Track systems between each pairof the
TREC 7 AdHoc, TREC 8 AdHoc, TREC 2003 Robust, and TREC 2004
Robust collections, for various metrics, without and with standardization.
Standardization is performed based on the original experimental systems.

TheR-normalized metrics are even less comparable between the
Robust and AdHoc collections than for identically sampled collec-
tions because of differences in the constitution of the set of known
relevant documentsR. Both Robust and AdHoc judgment pools
were formed by pooling to depth 100 (depth 125 for TREC 2003),
but the number of participant groups and therefore pooled sys-
tems was quite different, with 42 and 41 systems pooled for the
two AdHoc collections and only 16 and 14 for the Robust ones.
Moreover, the AdHoc tracks included a large number of manual
runs, identifying around 25% of the known relevant documents,
whereas the Robust tracks had none. The consequences can be
seen in Table 6. The average number of known relevant documents
per topic is greater for the AdHoc than for the Robust collections.
The Robust topics are not harder than the AdHoc ones, with the
TREC 2004 Robust systems receiving very similar average system
P@10 (and also RBP, not shown) scores in each of the four test en-
vironments. However, theR-normalized metrics such as AP (and
nDCG, not shown) are misled by the smaller values ofR in the
two Robust test environments into thinking their topics areharder,
and the corresponding normalized scores are higher than forthe
AdHoc test environments. Conversely, SP (and DCG, not shown),
being non-convergent metrics that evaluate deep in the runs, give
higher average scores to the sub-collections with more known rel-
evant documents. Standardization, shown in the last row, isnot af-
fected by the changes inR. Note that, as one would hope, slightly
improved sAP scores are calculated for the TREC 2004 Robust sys-
tems when they are standardized using the original systems’scores.

The conclusion of these experiments is clear: although (or per-
haps because) it sets out to adjust scores to reflect the weight of
relevance for a topic,R-normalization is in fact very sensitive to
variability in the way in which the set of known relevant documents
is determined. In contrast, standardization is robust to such differ-
ences, making collections with significantly differentR formations
comparable in the same way that identically sampled ones are. And
even whereR estimates are compatible, standardization offers far
greater comparability, as the randomized tests predicted.

T7.adh T8.adh T03.rob T04.rob
Judged 1606.9 1736.6 958.7 710.0
Relevant 93.5 94.6 33.2 42.1

P@10 0.452 0.450 0.466 0.434
AP 0.212 0.244 0.327 0.293
SP 17.88 20.29 9.71 11.61
sAP 0.516 0.503 0.517 0.500

Table 6: Mean number of documents judged and mean number of
documents found to be relevant for the different sub-collections of the
TREC 2004 Robust collection, and mean P@10, AP, SP, and sAP scores
for the TREC 2004 Robust Track systems run against each sub-collection.

6. PREVIOUS WORK
Average precision was developed in the context of TREC [Buck-

ley and Voorhees, 2005]. Although it has been widely used forover
a decade, there is no definitive paper describing the metric,and it
has only recently been analyzed in the literature. Discounted cumu-
lative gain and its variants are described in Järvelin and Kekäläinen
[2002]. Rank-biased precision is described by Moffat and Zobel
[to appear].

Determining the quality of a metric can easily become a circu-
lar problem: a good metric is one that highly ranks good systems,
but how do we know what the good systems are without first using
a metric to judge them? A common approach is to examine the
statistical features of metrics. Buckley and Voorhees [2000] and
Sanderson and Zobel [2005] calculate the error rate of a metric by
randomly partitioning a topic set and counting the number oftimes
the resulting subsets order system pairs differently; metrics with
lower error rates are regarded as more stable and therefore better.
Similarly, Sakai [2006] suggests that the sensitivity of a metric be
determined by the proportion of system pairs found to be signifi-
cantly different under an hypothesis test; he proposes the bootstrap
test for this purpose. Aslam et al. [2005] propose that the quality of
a metric can be determined by using a maximum entropy analysis:
the more constraints that a given metric score places upon the possi-
ble rankings it could have been derived from, the more information
that metric provides, and hence the better it is.

An alternative approach to assessing evaluation metrics isto ex-
amine how well they correlate with user experience. Huffmanand
Hochster [2007] found that reported satisfaction of assessors corre-
lates fairly strongly with relevance among the top three documents
or even simply the very top-ranked document; however, theirex-
periments used professional assessors attempting to interpret the
information needs and satisfaction of the users who submitted the
sampled queries. In contrast, Al-Maskari et al. [2007], working
with users judging their own satisfaction, found only weak cor-
relation between most metrics and user satisfaction. Rather than
self-satisfaction, Turpin and Scholer [2006] gave users two specific
tasks: find a single relevant document in the least time; and find
as many relevant documents as possible in five minutes. Turpin
and Scholer found no significant correlation between the average
AP score of a system and user performance on the first (precision)
task, and only a weak correlation on the second (recall) task.

It is one thing to determine that system A has scored higher than
system B on a given collection and metric; it is another to confirm
that this difference in scores is significant. Zobel [1998] examines
the use of thet-test, ANOVA, and Wilcoxon test, and finds that the
t-test and Wilcoxon diverge. Savoy [1997] examines the theoreti-
cal basis of hypothesis testing in the IR environment, and proposes
the use of the bootstrap hypothesis test. Smucker et al. [2007] pro-
pose the randomized permutation test as requiring less assumptions



about data distribution and sampling. They demonstrate that thet-
test and Bootstrap tests give almost identical results, with the ran-
domization test being similar, but that the Wilcoxon test diverges.

Bodoff and Li [2007] suggest that collections be viewed lessas
random samples from an underlying population, and more as pur-
posefully created tests, similar to tests that might be applied to stu-
dents. They then introduce ideas from test theory such as therelia-
bility of individual test components, including individual topics.

Zobel [1998] normalizes metric scores by dividing a run’s score
by the highest score achieved by any run for that topic; this is done
primarily to improve the comparability of scores achieved by dif-
ferent topics. Järvelin and Kekäläinen [2002] propose that scores
should be normalized, not by the highest scores achieved, but by
the highest score achievable, given the known distributionof rel-
evance. Mizzaro and Robertson [2007] normalize per-run scores,
either by topic or system, by subtracting the mean observed score
for that topic or run; they do not, however, adjust for variance.

The high degree of variance in topic score distribution and by
implication topic difficulty has been widely commented on. Using
ANOVA techniques, Tague-Sutcliffe and Blustein [1994] observe
that the topic effect is much stronger than the system effect; that is,
there is more variation between topic scores than between system
scores.

To our knowledge, comparing systems on disparate collections
has not been systematically explored, although the practical results
of Buckley [2005] indicate the difficulty of doing this with AP.

7. CONCLUSION
Accurate measurement is integral to improvement in all fields of

science. Having measures that are reproducible, comparable, and
immediately interpretable would enormously facilitate the identifi-
cation and acceptance of advancements in the discipline. The eval-
uation metrics currently in use, however, do not provide these char-
acteristics. Instead, experimental results for one systemcan only be
interpreted by explicit comparison with other systems, andsystem
comparison can only meaningfully be pursued by testing all sys-
tems on the one collection, something that is always inconvenient
and often impossible. Worse, the existing normalization methods,
reliant as they are upon an inevitably incomplete sample of the set
of relevant documents for each topic, can exacerbate the problem
of non-comparability between different collections, if the differ-
ent collections have had different relevance assessment inputs. In
contrast, standardization greatly increases the ability to compare
system results within and between test collections, and allows for
wide differences in performance to be immediately detectedfrom
aggregate scores, without the need to exhaustively test allsystems
on the one collection.
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