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ABSTRACT

The goal of system evaluation in information retrieval higags
been to determine which of a set of systems is superior onemgiv
collection. The tool used to determine system ordering is\af-
uation metric such as average precision, which computesive)|
collection-specific scores. We argue that a broader goahea
able. In this paper we demonstrate that, by use of standeializ
scores can be substantially independent of a particuléeatimn,
allowing systems to be compared even when they have beeul test
on different collections. Compared to current methods,teah-
niques provide richer information about system perforneamm-
proved clarity in outcome reporting, and greater simpfidit re-
viewing results from disparate sources.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance eval uation.

Keywords

Retrieval experiment, evaluation, average precisionesysnea-
surement

General Terms
Measurement, performance, experimentation

1. INTRODUCTION

A key aim of research in information retrieval (IR) is to dee
search methods with improved effectiveness, but identifioaof
improvements requires rigorous evaluation methodologigbe
Cranfield evaluation methodology and its derivatives uaadsrd
test collections, consisting of documents, topics, andijuehts as
to which documents are relevant to which topics. The IR syste
to be evaluated are used to run the topics (formulated asegjier
against the document corpus to produce a ranked list of deoctem
or run for each topic. The relevance judgments then show which
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documents are relevant to the topic, and an evaluation enistri
applied to the list to provide a score for the run. Run scores a
aggregated, typically by taking the arithmetic mean, tapoe an
overall score for the system. The effectiveness of diffesgatems
can be compared by their aggregate system scores, andtikg-sta
cal significance of any score difference assessed with athgpis
test [Smucker et al., 2007].

Several evaluation metrics are widely used in system measur
ment, including precision-al-(P @), average precision (AP), and
discounted cumulative gain (DCG). However, these measioes
not allow the performance of a system tested on one collettio
be readily compared with that of a system tested on a difta@n
lection. Variability in topic difficulty, and hence in aveya topic
scores, means that a good score for one collection might be po
for another, depending on the mix of topics in the collectiNior-
malization by the score of an ideal ranking, as employed iraA&
nDCG, can be viewed as a method for correcting for such viériab
ity, but it does so with quite limited success.

In this paper, we investigate the use subre standardization
[Webber et al., 2007] to enable inter-collection score cangons.
Under standardization, the difficulty of a query is direebtimated
from the scores achieved by a sample of experimental systerds
parameters derived from these estimates are then usedalie
the scores both of the experimental systems and of fututeregs
Standardization gives each topic the same score mean amtheda
deviation for the experimental systems, and reduces tleetedf
topic variability in the evaluation of new systems.

Standardization makes scores interpretable in themseinelst
becomes possible to directly compare scores measuredferedif
topics and test collections. With standardization, formegke, re-
searchers with private collections could compare theultesvith-
out exchange of data sets, through the use of common stazidgrd
systems. Within a single collection, reduction in varidpimeans
that all topics contribute equally to measured differerinesffec-
tiveness. Across multiple collections, researchers calddtify
how consistent a system is in different environments.

To explore the validity of score standardization, we analfe
results for runs on several key TREC collections. Our resiibw
that standardization leads to an average two-thirds reduist the
difference in scores achieved by an IR system on differelfié@o
tions, enabling different systems to be evaluated agaiffsteht
collections and still have their performance comparedn&ied-
ization is also more robust to differences in collectionnfation
than existing normalization schemes. Standardizationshasral
benefits and no obvious drawbacks, and we propose that sthnda
ization parameters be published with test collectionslamalicher
comparison and evaluation of systems than is currentlyilpless



2. METRICSAND SCORE VARIABILITY

Many evaluation metrics have been described in the litezatu
[Buckley and Voorhees, 2005, Jarvelin and Kekalain@922 Mof-
fat and Zobel, to appear]. Most of these are based on pracsid
recall. Precision is the proportion of documents up to a specified
depth (that is, ordinal rank) in a run that are relevaatall is the
proportion of all relevant documents that are returned. Duibe
number of documents in current collections, only a subsehef
documents can be assessed for relevance, and recall is ampu
based on the set of known relevant documeRtsThe degree of
incompleteness OR is, in general, unknown.

A simple evaluation metric is precision-attP @), which is the
proportion of the topl documents in a run that are relevant. There
is no adjustment for the number of relevant documédts- |R|
for each particular topic, which can vary by a factor of a hexdd

or more. For instance, the maximum P@10 score that any run can

receive for a topic with three relevant document9.i$, while a
ceiling effect, in which most runs have P@10 at or ne&r can
occur when there many easy-to-find relevant documents. heric
metric, which also lacks aR adjustment, is rank-biased precision
(RBP) [Moffat and Zobel, to appear], in which the effectiess

score is a biased, bounded sum of relevance values. Therhighe

the rank of a relevant document, the greater its contributiothe
score, with the bias controlled by a parameter

Systems

Topics

Figure 1. Per-run average precision scores for TREC 8 AdHoc Track
systems. Systems are in rows, ASCIl-ordered by system nao@ds are

in columns, ordered by topic number. Each cell represeeté\Bhscore for

a system’s run against a topic. Lighter shades represen¢hggores.

the standard deviation of scores for a systed{/..), and for a
topic,sd(M.¢).

Some metrics adjust for the number of documents relevant to a  Test theory, which originated in the assessment of thetiaisili

topic. One of these is R-precision (RP), which modifiesdPi@®
settingd to the number of known relevant documeiitsfor each
topic, resulting in a relatively robust metric [Buckley aviabrhees,
2005]. A more complex metric is average precision (AP), Wwhic
averages the precision of a run at each relevant documemneet,
assigning a precision ofto unreturned known relevant documents.
The metrics RP and AP share the characteristic that a pedielct
ing (one which places all known relevant documents at thg top
and only a perfect ranking, achieves a scorg.of

Assigning a score of to a perfect run can be achieved for other
metrics, including those supporting multi-valued releajudg-
ments, by a process of expligibrmalization, where a run’s raw
metric score is divided by the score that an ideal rankinglgvou
achieve, based on the set of known relevant docuni®n{and,
for metrics supporting multi-valued relevance, their @éegof rel-
evance). The discounted cumulative gain metric (DCG)vglar
and Kekalainen, 2002], which sums the relevance corttdbs of
each rank, discounted by a logarithmically decaying weiightor-
malized by dividing by the score of an ideal ranking to praguc
normalized DCG (nDCG). Such normalization can be applied to
essentially any metric. In fact AP (though not RP) is a metribis
category, and can be considered as a raw metric, sum of joregis
(SP), normalized by the number of relevant documéd{#\slam
et al., 2006], since the SP score for a ranking withFaltelevant
documents at the top is itsef. Thus, AP is normalized SP (nSP).
We refer to normalization by ideal ranking &snormalization.

A metric gives a score for a system’s run against a topic. For
an evaluation experiment, the run scores for the topicsentekst
collection and the systems participating in the experinuam be
considered as a matrix, as illustrated in Figure 1, in whigh s
tems are rows, topics are columns, and higher scores aranghow
lighter-shaded cells. Note that the easy topics (whitdaadrtines)
stand out much more clearly than the good systems, althoeigh ¢
tain poor systems are distinct as horizontal black lineg. Mebe
a matrix of run scores such as that in Figure 1. The score for sy
tem s achieved on topi¢ is denoted asn.;. A system’s score is
the mean of its per-run score/ ... It is also interesting to con-
sider the mean score of a topitf... Similarly, one can consider

of human subjects through examination, is built on the cpnoé

a subject’s “true” score, which the testing process is giterg to
elicit [Bodoff and Li, 2007]. In information retrieval eusdtion, a
similar goal is attractive, that is, to be able to say that stesp’s
true score is simply (say).32, and to derive this “true” score (or
a reliable estimate of it) with as little assessment efferpassi-
ble. Indeed, much contemporary IR evaluation is implicklylt

on the assumption of a true score hiding behind the topicescor
observed on a given collection. For instance, statistigaificance
tests such as thetest implicitly ask how likely it is that the true
mean metric scores of two systems are in fact the same, dieen t
observed topic scores and assuming that they are a randoptesam
of some larger population of topic scores.

However, such absolute interpretations of metric scorésctw
map from an achieved aggregate score in isolation to an a&valu
tion of the performance of the system, are not possible wi¢h t
metrics above, due to the high degree of variability in tquores
illustrated in Figure 1. The distribution of system scorepehds
heavily on which topics happen to be included in the coltettand
is the reason why we always need to interpret scores in thextwon
of a particular test collection. In particular, a system imigchieve
quite different scores on different test collections, aen for re-
trieval contexts for which this collection is representatimight
achieve a different score had a different set of topics béwn c
sen. For example, Buckley [2005, p. 311] compares 8 suseessi
versions of the SMART system on the first 8 TREC AdHoc col-
lections, and, while the improvement in AP score of the tadgsr
the earliest version on any single collection is of the oafe50%
to 100%, the best collection AP score of the earliest (wekgs-
tem is better than 4 of the collection scores of the latesbrigiest)
system. Even on the one collection, a system'’s score canbenly
recognized as good or bad by comparing it with the scoreshafrot
systems on the same collection. In fact, knowledge of a syste
score is less useful than knowledge of its rank among thefset o
systems run against the collection.

Figure 2 illustrates the difficulty of assigning a meaningato
absolute AP score, even in the context of a single collectidre
graph displays the 95% confidence intervals on mean AP stmres
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Figure2: The 95% confidence intervals on mean AP scores for TREC 8
AdHoc Track systems, usingtalistribution. Systems are ordered by their
mean AP scores.

System AP {/s..)

READWARE2 Flab8atdn ric8tpx UT803
mean 0.469 0.324 0.269 0.176
st.dev 0.224 0.220 0.219 0.185

Topic AP (M...)

q403 q430 q414 q401
mean 0.708 0.486 0.203 0.048
st.dev 0.226 0.217 0.108 0.090

Table 1: Mean and standard deviation of AP scores for the first, tenth,
fortieth, and seventy-fifth percentile systems and topicsnean AP from
TREC 8 AdHoc Track.

the 129 systems participating in the AdHoc Track of TREC 8 Th
fundamental assumption here, as with statistical sigmiieaest-
ing, is that the observed scores have been randomly sanmmpied f
an underlying population of scores. Thus, for instance strstem
Flab8atdn achieved an observed mean AP scor6.824; but the
best that can be said under the random sampling hypothebiatis
(with 95% probability) the system’s true mean AP score isvieen
0.262 and 0.386. Despite being the thirteenth-ranked system by
observed score, its score range overlaps with those of tunde
ranked and ninety-fourth-ranked systems. So, even asguimé
the collection is perfectly representative of what it iseimied to
test, a mean AP score is, in isolation, not very informative.

The reason for the wide confidence interval on AP scores is the
variability of per-topic scores. Table 1 lists AP score neand
standard deviations for the first, tenth, fortieth, and sgwifth
percentile systems and topics as ordered by mean AP. Sysiam s
dard deviations are remarkably similar, and the four systezans
range by a factor of onlg.5. Topics, on the other hand, are far
more variable; the four means range by a factor of almdstand
standard deviations 8/5; ordered by standard deviation, the ratio
from the first to the seventy-fifth percentile is alméstAnd this
variability is despite AP’s use dR-normalization.

Even if system comparisons are on a single collection, aindga
hypothesis tests are being used to help control the difterém
topic score means, the wide variability in topic score staddle-
viations means that the comparisons may be less reliahtettiea
test results suggest. In a paired hypothesis test, the datigouis
based on the score deltas between the two systems; but ifdhe s
standard deviation of one topicGgimes that of another topic, then
the average score delta will also Betimes larger, meaning the
higher-variance topic will havé times as much influence in sys-

tem score deltas and paired hypothesis testing as the \av@mnce
topic. Nor are high-variance topics more reliable indicsiaf per-
formance than low-variance topics. The Pearson’s corosldte-
tween topic reliability, as measured by item-total cortiela[Bod-

off and Li, 2007], and topic AP standard deviation, consigthe
best 75% of TREC 8 AdHoc Track systems by mean AP, is only
0.005, indicating no meaningful correlation. Measured differes
between systems are disproportionately due to a subset tifics
rather than to the topic set as a whole.

3. STANDARDIZATION

We propose a direct form of normalization, namsetgndard-
ization. Score standardization is a well-known technique in tests
applied to human subjects [Hays, 1991, chapter 4], but inbéaso
our knowledge been applied to IR evaluation. In standatidiza
topic scores are directly adjusted by the observed meae scat
standard deviation for that topic on a sample of systemstdpe
t has a score mean ¢f; = M., and a score standard deviation
of o = sd(M.:), and if a systens receives a score for that topic
of ms:, then the standardized scorg, for that run is:

’ Mst — MUt
mg =

1)
Ot

The valuesu: and o, are thestandardization factors for topic ¢.
Such a score is known aszascore, and expresses how many stan-
dard deviationsn: is from the sample mean. As such, a standard-
ized score is immediately informative in a way that an urdhad-
ized one is not: one can tell directly from a run’s score whethe
system has performed well for the topic.

In a recent workshop paper [Webber et al., 2007], we explored
the impact of standardization on an historical TREC coitect\We
found that, within the one collection and set of experimesya-
tems, standardization evens out topic score variancesnmatdi-
vidual run scores more meaningful. In this paper we build oth a
extend those results, and apply the techniques to the pnobfe
practical inter-collection system comparisons.

Standardized scores are centered on zero and unbounded, while
most IR metrics are bounded in the ran@el]. To follow this
practice,z-scores can to be mapped into fel] range, with one
attractive candidate being the cumulative density fumcti6 the
standard normal distribution:

N m 1 712/2
) [ _ \/ﬂe dz )
Normal-CDF-converted standardization is used througttositpa-
per, and is referred to simply as “standardization” fromehen.
Observe that, by design, a standardized score.®fmeans “av-
erage”, and).84 and0.16 represent one standard deviation above
and below average. Conversion to the raftgé] also has the de-
sirable property of reducing the influence of outlier datantsy for
instance when only one system finds relevant documents épia t
Figure 3 shows the distribution of per-run unstandardized a
standardized AP scores for TREC 8 AdHoc Track systems. The
raw AP scores are heavily skewed towards lower values, With a
most half of the per-run scores being beléve. In contrast, the
standardized scores are evenly distributed acros0tH¢ range,
with the 25th, 50th, and 75th percentiles beirggs, 0.50, and0.74.
Standardization of raw scores produces precisely the seone s
values as standardizationBFnormalized scores, sind@-normal-
ization involves division by a per-topic constant factohieh iden-
tically scales topic mean and standard deviation. So, atdimed
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Figure 3: Distribution of the6,450 per-run AP and standardized AP

scores for TREC 8 AdHoc Track systems.

SP gives precisely the same values as standardized AP @&P),

standardized DCG as standardized nDCG. Thus, metrics can be

considered as raviR-normalized, and standardized.

The production of standardization factors requires theterce
of experimental runs from which they can be calculated. Hane
since the current test collection creation methodology edgjuires
such experimental systems to form the judgment pool, intjpeac
the requirements for producing standardized scores arégherh
than for producing unstandardized scores. Once standdiatiz
factors for each topic and metric have been determined fiwm t
experimental systems, they can be published along withdsie t
collection, and used to standardize the scores of new sgsti@m
against the collection. How many experimental systems @fe r
quired to derive reliable standardization factors, and lomg these
factors remain reliable in the face of changing (and hobefat-
proving) systems, is considered in the next section.

4. ROBUSTNESS OF STANDARDIZATION

Experimental data

The data used in this paper is the TREC 2004 Robust Trackdkst ¢
lection and runs from the participating systems. The Robrestk

Collection
T7.adh T8.adh TO03.rob
0.998 0.998 0.998
0.969 0.962 0.970

Pearson
Kendall

Table 2: Pearson’s correlation of scores and Kendatsank correlation
using standardized AP for TREC 2004 Robust Track systemaadnaf the
earlier sub-collections, comparing the effect of stanidard based on the
original experimental systems and standardizing baseti@@REC 2004
Robust Track systems.

are then used to standardize the scores of new systems lvaing e
uated against the collection. Over time, as systems impiitre
standardization factors may become out of date. This caa tvay
effects. First, comparisons within a collection can becamaecu-
rate, as the relative difficulty of topics may change. Secstah-
dardizations on different collections may be based on éxyantal
systems of different intrinsic quality. The second issueadssid-
ered in Section 5, the first here.

Table 2 gives the Pearson’s correlation for system scoreshen
Kendall's 7 correlation for system rankings for the TREC 2004
Robust systems on each of the earlier sub-collections, admp
in each case the results obtained by standardizing usingritie
nal experimental systems and standardizing using the TRIBZ 2
Robust systems. Note that the Pearson and Kendaltsrrela-
tion coefficients work on different scales and so cannot becty
compared to each other. The Kendai’'should be compared with
the0.742 correlation for ranking the TREC 2004 systems based on
the TREC 2003 versus the TREC 2004 topics; the Pearson’s co-
efficients should be compared with th®43 correlation on scores
between the two topic sets. Clearly, standardization uslagively
outdated systems is much less distorting than comparissimgkn
different test collections.

Estimation of standardization factors

The standardization factors derived from the standargigystems
can be thought of as estimates of the true factors for the tépkey

of TREC is designed to examine and improve the consistency of question is how many systems are required in order to getaleli

information retrieval systems by attempting to predicficiifit top-

ics and emphasizing them in evaluation metrics. The doctisetn

is the AdHoc Track corpus, namely TREC disks 4 and 5, minus
the Congressional Record. The TREC 2004 Robust Track topic set
consists not only of 49 topics newly created for the task (a &@&s
dropped when no relevant documents were found), but alsbGhe
topics from the TREC 2003 Robust task, and 150 topics from the
AdHoc tracks of TREC 6 through TREC 8 (1997, 1998, and 1999).
Relevance judgments for the earlier topic sets are reuséunew
judgments being made only for the new topics. A total of 118 sy
tems from 14 different groups participated, with partitipg sys-
tems submitting runs against both the 49 new topics and tDel20
ones. The runs submitted to the original experiments in kwttie
older experimental sub-collections were created are alaitehle.
This data set therefore is well-suited for exploring quesi of
inter-collection comparability and the durability of stemdization
factors. However, we exclude the TREC 6 AdHoc sub-coll@ctio
as the lack of topic title keywords from many topic descdps, an
issue unique to this sub-collection, causes anomalousnpeahce
from description-only runs.

Longevity of standardization factors

Standardization factors for a collection are calculatezskdaon the
results of thestandardizing systems, that is, the systems that con-
tributed to the original experiment. These standardipataztors

standardization factors, and, in particular, what effeducing the
number of standardizing systems has upon system rankinge, He
the benchmark is the ranking obtained from standardizdtictors
derived from the full experimental set. The following expeents
use the relevance judgments from the full judgment poolitig
the number of participating systems only when calculatitagn-s
dardization factors.

The test uses as standardizing systems the TREC 2003 Robust
Track systems, and the test collection is the topics crefatetthat
track. The evaluated systems are the TREC 2004 Robust Track
systems as run against the TREC 2003 topics. The procedure is
to sample from the standardizing systems, derive starmion
factors from the sample, use these to standardize the sobties
evaluated systems, and calculate the Kendalketween the sys-
tem ranking from the sampled standardization and from thie fu
standardization. This is repeated multiple times for earhde
size. The 50th (median), 95th and 99th percentile lowestkkn
7 figures are recorded. The whole process is then repeatethr o
sample sizes.

Figure 4 reports the Kendall’s for varying sample sets, giv-
ing median values and lower-end percentiles, using stdimst
AP. In comparison, the Kendall’s on system rankings on the
TREC 2004 Robust systems between the TREC 2003 and the
TREC 2004 topics using unstandardized AB.ig12, and between
the unstandardized and standardized AP scores for the TREE 2
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Figure 4: Percentiles of Kendall's between rankings on partial and full
standardization system sets, using standardized AP. $hedkection and
standardization systems are from the Robust Track of TREX3;20e eval-
uated systems are those submitted to the Robust Track of TRE& con-
sidering only their runs against the TREC 2003 topics. Thezree 2,000
random samples made for each sample size. The full stazd#ofi set has
78 systems. The Kendallsbetween the TREC 2003 and TREC 2004 sub-
collections on unstandardized AP, and between unstarzéardind stan-
dardized AP on TREC 2003, are also shown.

sub-collection i9.919. Even taking the 99th lowest percentile, as
few as 5 of the 78 systems need to be sampled for standaattizati
factors that give more consistent results than inter-ctbea com-
parisons, while 10 to 15 systems are sufficient to better thieee
lation with unstandardized scores at the 95th and 99th pties

A small set of systems, therefore, is sufficient to providendard-
ization factors that give reliable system rankings, far l&gnahan

is needed to provide the relevance judgments.

5. CROSS-COLLECTION COMPARISONS

Comparability of identically sampled collections

In investigating the question of cross-collection compdity, two
kinds of collections need to be considered. The first is ctibes
that we know to be drawn from the same population under the ran
dom sampling hypothesis. By definition, significance testa/ben
two such collections are statistically valid, if it is undeyod that
their results are being extended only to other samples sfftbp-
ulation. The second is collections where it cannot be asduhs
they have been randomly sampled from the same underlying-pop
lation, that is, where there may be factors that cause otection

to be significantly different from another.

If we use random sampling, then the sampled values will be-
have as an independent and identically distributed vagjatid the
theoretical basis of hypothesis testing will be met. Sucidoanly-
sampled collection pairs can be approximated by randomiy sa
pling from the topics of an existing collection, or set oflections.
Any set of collections can be used and still, via random sargpl
be considered identically sampled, but it is preferablehoose
collections that are relatively homogeneous. Here, thetapizs
from the AdHoc tracks of TREC 7 and TREC 8, Topics 351-450,
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Figure 5. Mean standard-deviation normalized root mean square error
(dRMSE) for TREC 2004 Robust Track systemsigA00 random parti-
tionings of Topics 351-450 from the TREC 7 and TREC 8 AdHocksa

for different metrics, with and without normalization an@rsdardization.
Standardization factors are derived from the original TRE&hd TREC 8
systems.

Score comparability between collections means that, if we r
the same system against two collections, it should recéinias
scores for each collection. Here, “similar” can be undedto the
loose sense of producing aggregate system scores thattai@no
different; or, more narrowly, as producing sets of topicresdhat
are not found to be significantly different under statidtieating.

System score comparability can be measured using root mean
squared error (RMSE). Continuing the notation of Equatiptetl
S be our set of evaluated systems. Consider two collectiéhs,
and D. Let MC,, be the score under some metric that system
s € S achieves on collectio@’ (that is, the mean of the scores that
s achieved on the topics making @p), and similarly forM P ..
Then the root mean squared error betwéeand D is:

RMSE = \/ZSES(WW s @3)

5]

The RMSE is dependent upon the magnitude of the score values f
a metric; if scores for one metric are precisely ten timestitees
for another, then the RMSE will be ten times greater, evengho
comparability is effectively the same. To facilitate comipans
between different metrics we normalize by dividing by therage
standard deviation of system scores for each collectiodetive
standard-deviation normalized root mean square error MSIR

2 - RMSE
sd({MC,. : s € S}) +sd({MP,, : s € S})

Note that normalizing by the geometric rather than the arétic
mean of the two standard deviations produces almost idgmtge
sults in practice.

Randomized topic set re-sampling can be used to deriva-distr
butions of dRMSE figures for different metrics. Figure 5 gitke
results of multiple random partitionings of the TREC 7 ancElGR8
AdHoc topics. The metrics P@10, RBP with persistemee 0.95,

SP (unnormalized AP), and DCG are compared, together weih th
R-normalized and standardized versions. The results shaveth

dRMSE =

4)

are used, and the runs are those made by the TREC 2004 Robusery metric with standardization is more stable than all rogtin

Track systems. The topics (and associated runs) are rapgam!
titioned into two halves to form two randomly sampled cdiieas.
(The fact that we are sampling from such a small populatioth-w
out replacement, means that the assumption of independenice
olated, but the results are adequate for our current puspo3ée
random partitioning is repeated multiple times to geneaaget of
identically-sampled collections.

their raw form. And standardization leads to significantigajer
stability thanR-normalization, even on identically-sampled col-
lections. (As will be seen later, normalization is far lesbust to
differently-sampled collections.)

A second form of collection comparability is finding stagsily
significant differences. If the same system is tested on tifvo d
ferent collections, then the results on the two collectishsuld
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Figure 6: The 97.5th highest percentile false positive rates for various
metrics, with different forms of normalization. A false jito is a finding
that a system is significantly different from itself usingveottailed, two-
samplet-test at levelo. = 0.05. False positive rates are calculated for the
110 TREC 2004 Robust Track systems, 900 random re-partitionings
of Topics 351-450 from the TREC 7 and TREC 8 AdHoc tracks. (Gied
ization factors are derived from the original TREC 7 and TRESystems.

not be found to be significantly different; if they are, thdmatt
is a false positive, or at least the collections are not coaipe,
since obviously a system is not significantly different friself.
The false positive rate for a metric on two collections tfeme is
taken from the number of systems found to be significantliedif
ent from themselves on the two collections. The significaese
employed here is a two-tailed, two-samphest, at significance
level o = 0.05.

T8.adh TO03.rob TO04.rob

T7.adh 0.627 1.857 1.285
T8.adh 1.387 0.859
TO3.rob 0.583

Table 3: Standard-deviation normalized root mean square erroyfiem
AP scores between each pair of collections in the TREC 2003u&cset
for all systems participating in the track.

T7.adh T8.adh TO03.rob TO04.rob

T7.adh 0 0 0
T8.adh 2 0 0
T03.rob 103 57 2
TO4.rob 61 8 0

Table 4: Number of the 110 TREC 2004 Robust Track systems that were
found to be significantly better when tested on the sub-ciidie in the

row than on the sub-collection in the column, using unstetidead mean
AP. Significance is determined by a two-sample, one-taitt; at level

o = 0.025.

Hoc collections are relatively close to each other, as agetwo
Robust collections. For instance, the observed dRMSEGS be-
tween the TREC 7 and TREC 8 AdHoc collections is close to the
mean randomized dRMSE over these topio3.60 reported in Fig-
ure 5, indicating that from the perspective of this statigiie two
collections are not significantly different. However, caripons

Randomized topic set re-sampling can also be used to test thebetween any of the AdHoc and any of the Robust collections are

false positive rate. Figure 6 gives the upper end of the 95f6 co
fidence interval on false positive rates for the TREC 2004WRbb

problematic. The observed dRMSE 1857 between the TREC 7
and TREC 2003 collections, for example, compares with therme

Track systems over the TREC 7 and TREC 8 AdHoc Track top- randomized dRMSE across those two collection8.696, and in
ics. Due to random sampling, the mean false positive rates fo fact falls beyond the 99th percentile of randomized valuesan-

every metric and form of normalization are close to the gigni
cance level of0.05 (they range fron0.042 to 0.052). By look-
ing at the upper end of the confidence interval, we are instgad
amining a reasonable upper bound on how high the false y®siti
rate can go when comparing two (identically sampled) teli¢co

ing that the two collections are highly significantly dieit for this
statistic when using AP. Table 4, which gives false positates,
also indicates severe problems. Almost all systems seemifisig
cantly better than themselves when evaluated using AP stghia
TREC 2003 collection than when evaluated against the TREC 7

tions. SP and DCG have higher discriminative power than RBP o collection, and again this false positive rate is beyondgta per-

P@10, so the fact that they have higher potential falseipesdtes
is not surprising. However, standardization enormouskyrekses
the upper-end false positive rates, from around 50% to just o
15%. This is achieved without harming discriminative paweor
instance, for the TREC 8 sub-collection, the proportionystem
pairs found significantly different on a two-tailed, pairetest at
level o = 0.05 is 68.7% for DCG, 69.3% for nDCG, and68.8%
for sDCG. Normalization byR, in contrast, does little to improve
false positive rates. That is to say, even where the hypistbésan-
dom sampling from an underlying population is observedgaise
case here), use of standardized metrics rather frarormalized
metrics leads to far more reliable inter-collection conmaars.

Comparability between distinct collections

Examination of inter-collection metric comparability iveten two
identically-sampled collections is a best-case situatidmere the
statistical equivalence of the collections is artificiatheated. In
practice, different collections are not identically saethl How-

centile of randomized values.

Table 5 gives the inter-collection dRMSE of standardizethHP
scores. As anticipated from Figure 5, the standardizedesduave
a much lower dRMSE for every collection pair than do tRe
normalized AP scores in Table 3. More particularly, the dABMIS
figures are similar for every collection pair. The observBIMSE
figures for standardized AP are well within the 95% confiddnee
terval found by randomization, and in fact sit quite closé®re-
spective means, indicating that, for dRMSE with standadiiaP,
the collections are not significantly different. The falsesitive
rates (not tabulated for space reasons) are also much ieghrav-
eraging 5% and not exceeding 11% for any collection pait wit
strong effect between AdHoc and Robust collections.

Figure 7 gives the mean dRMSE scores for various metrics, in
their raw,R-normalized, and standardized forms. The valué.df
in the middle bar of the SP/AP group, for instance, is the nafan
the six values reported in Table 3. Note that these meansdecl
both the two same-track pairs and the four different-trédsdust-

ever, the AdHoc and Robust TREC collections use the same doc-to-AdHoc) pairs; if only the latter were included, the réswiould

ument corpus and were built with similar methodologies, o
parability between them would be desirable. We now explbee t
comparability of metrics in these circumstances, and tfecebf
‘R-normalization and standardization on this comparability

be even less flattering tR-normalization. Standardization mod-
erately improves RBP’s observed cross-collection conipkira
and, unexpectedly, marginally worsens that for P@10. Hewev
the improvements for SP/AP and DCG are dramatic, even from

Table 3 shows the dRMSE of system AP scores for each pair of their R-normalized forms.

collections used in the TREC 2004 Robust Track. The two Ad-



T8.adh TO03.rob TO04.rob

T7.adh 0.320 0.342 0.373
T8.adh 0.406 0.397
TO3.rob 0.398

Table5: Standard-deviation normalized root mean square erroy&ies
standardized AP scores between each pair of collectiorteif REC 2004
Robust set for all systems participating in the track. Stadidation factors
are derived from the original experiments.

2.0 1
B raw
@ norm
1.5 1 O std

1.0 1

0.5 A

0.0 -
RBP.95

SP/AP

P@10 DCG
Figure 7: Mean standard-deviation normalized root mean square error
(dRMSE) for TREC 2004 Robust Track systems between eactopdie
TREC 7 AdHoc, TREC 8 AdHoc, TREC 2003 Robust, and TREC 2004
Robust collections, for various metrics, without and withnslardization.
Standardization is performed based on the original exparial systems.

T7.adh T8.adh TO03.rob TO04.rob

Judged 1606.9 1736.6 958.7 710.0
Relevant 93.5 94.6 33.2 42.1
P@10 0.452 0.450 0.466 0.434
AP 0.212 0.244 0.327 0.293
SP 17.88 20.29 9.71 11.61
SAP 0.516 0.503 0.517 0.500
Table 6:  Mean number of documents judged and mean number of

documents found to be relevant for the different sub-ctibes of the
TREC 2004 Robust collection, and mean P@10, AP, SP, and séessc
for the TREC 2004 Robust Track systems run against eachdlgziion.

6. PREVIOUSWORK

Average precision was developed in the context of TREC [Buck
ley and Voorhees, 2005]. Although it has been widely usedver
a decade, there is no definitive paper describing the metnid it
has only recently been analyzed in the literature. Disauiotmu-
lative gain and its variants are described in Jarvelin aekigkainen
[2002]. Rank-biased precision is described by Moffat antbelo
[to appear].

Determining the quality of a metric can easily become a eircu
lar problem: a good metric is one that highly ranks good syste
but how do we know what the good systems are without first using
a metric to judge them? A common approach is to examine the
statistical features of metrics. Buckley and Voorhees (2Ghd

TheR-normalized metrics are even less comparable between the ggnderson and Zobel [2005] calculate the error rate of aarstr

Robust and AdHoc collections than for identically sampleftec-
tions because of differences in the constitution of the Skhown
relevant document®. Both Robust and AdHoc judgment pools
were formed by pooling to depth 100 (depth 125 for TREC 2003),
but the number of participant groups and therefore pooled sy
tems was quite different, with 42 and 41 systems pooled fer th
two AdHoc collections and only 16 and 14 for the Robust ones.
Moreover, the AdHoc tracks included a large number of manual
runs, identifying around 25% of the known relevant docureent

randomly partitioning a topic set and counting the numbeimoés
the resulting subsets order system pairs differently; icetwvith
lower error rates are regarded as more stable and theredtier.b
Similarly, Sakai [2006] suggests that the sensitivity of etmc be
determined by the proportion of system pairs found to beifsign
cantly different under an hypothesis test; he proposesdbtstrap
test for this purpose. Aslam et al. [2005] propose that tadityuof

a metric can be determined by using a maximum entropy asalysi
the more constraints that a given metric score places ugopasi-

whereas the Robust tracks had none. The consequences can bgjo rankings it could have been derived from, the more infdiom

seen in Table 6. The average number of known relevant dodsmen
per topic is greater for the AdHoc than for the Robust coiters.

that metric provides, and hence the better it is.
An alternative approach to assessing evaluation metricsds-

The Robust topics are not harder than the AdHoc ones, with the 5mine how well they correlate with user experience. Huffrand

TREC 2004 Robust systems receiving very similar averageisys
P@10 (and also RBP, not shown) scores in each of the fourrtest e
vironments. However, th&-normalized metrics such as AP (and
nDCG, not shown) are misled by the smaller valueskoin the
two Robust test environments into thinking their topics fzaeder,
and the corresponding normalized scores are higher thathéor
AdHoc test environments. Conversely, SP (and DCG, not shown
being non-convergent metrics that evaluate deep in the gins
higher average scores to the sub-collections with more krraly
evant documents. Standardization, shown in the last romgtigf-
fected by the changes iR. Note that, as one would hope, slightly
improved sAP scores are calculated for the TREC 2004 Ropsist s
tems when they are standardized using the original systeroses.
The conclusion of these experiments is clear: although €or p
haps because) it sets out to adjust scores to reflect the wafigh
relevance for a topicR-normalization is in fact very sensitive to
variability in the way in which the set of known relevant dotents
is determined. In contrast, standardization is robust th liffer-
ences, making collections with significantly differédtformations
comparable in the same way that identically sampled onef\a
even whereR estimates are compatible, standardization offers far
greater comparability, as the randomized tests predicted.

Hochster [2007] found that reported satisfaction of assesrre-
lates fairly strongly with relevance among the top threeutoents
or even simply the very top-ranked document; however, tieir
periments used professional assessors attempting t@retehe
information needs and satisfaction of the users who subdhttie
sampled queries. In contrast, Al-Maskari et al. [2007], kiry
with users judging their own satisfaction, found only weail-c
relation between most metrics and user satisfaction. Raliae
self-satisfaction, Turpin and Scholer [2006] gave usemsdpecific
tasks: find a single relevant document in the least time; amd fi
as many relevant documents as possible in five minutes. Murpi
and Scholer found no significant correlation between theaaes
AP score of a system and user performance on the first (poagisi
task, and only a weak correlation on the second (recall) task
Itis one thing to determine that system A has scored higlaar th
system B on a given collection and metric; it is another tdficon
that this difference in scores is significant. Zobel [1998jraines
the use of the-test, ANOVA, and Wilcoxon test, and finds that the
t-test and Wilcoxon diverge. Savoy [1997] examines the #sor
cal basis of hypothesis testing in the IR environment, anpg@ses
the use of the bootstrap hypothesis test. Smucker et al7[200-
pose the randomized permutation test as requiring lessgsEuns



about data distribution and sampling. They demonstratettied-
test and Bootstrap tests give almost identical resultd) thi¢ ran-
domization test being similar, but that the Wilcoxon tesedijes.

Bodoff and Li [2007] suggest that collections be viewed lass
random samples from an underlying population, and more &s pu
posefully created tests, similar to tests that might beiegpb stu-
dents. They then introduce ideas from test theory such azliae
bility of individual test components, including individuapics.

Zobel [1998] normalizes metric scores by dividing a run'srec
by the highest score achieved by any run for that topic; thine
primarily to improve the comparability of scores achieveddif-
ferent topics. Jarvelin and Kekalainen [2002] propds® scores
should be normalized, not by the highest scores achievedyybu
the highest score achievable, given the known distributiorel-
evance. Mizzaro and Robertson [2007] normalize per-runesco
either by topic or system, by subtracting the mean observecks
for that topic or run; they do not, however, adjust for vacian

The high degree of variance in topic score distribution apd b
implication topic difficulty has been widely commented orsitu
ANOVA techniques, Tague-Sutcliffe and Blustein [1994] eh&
that the topic effect is much stronger than the system effieat is,
there is more variation between topic scores than betwestersy
scores.

To our knowledge, comparing systems on disparate collestio
has not been systematically explored, although the pedctsults
of Buckley [2005] indicate the difficulty of doing this withRA

7. CONCLUSION

Accurate measurement is integral to improvement in all $ield
science. Having measures that are reproducible, comearafdi
immediately interpretable would enormously facilitate ttentifi-
cation and acceptance of advancements in the disciplineeVl-
uation metrics currently in use, however, do not provide¢hehar-
acteristics. Instead, experimental results for one systenonly be
interpreted by explicit comparison with other systems, sygtem
comparison can only meaningfully be pursued by testingyeit s
tems on the one collection, something that is always inauieve
and often impossible. Worse, the existing normalizatiothogs,
reliant as they are upon an inevitably incomplete samplé®tet
of relevant documents for each topic, can exacerbate tHagmo
of non-comparability between different collections, ietHiffer-
ent collections have had different relevance assessmputsinin
contrast, standardization greatly increases the abiitgampare
system results within and between test collections, armivalfor
wide differences in performance to be immediately dete@teih
aggregate scores, without the need to exhaustively tesysttms
on the one collection.
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